

Protocol: XENO-Q miRNA Detection Kit

Part A. XENO-Q Reaction

1. Prepare XENO-Q reaction as indicated in Table 1. Mix thoroughly with a vortex and centrifuge reaction tubes briefly to spin down the contents and eliminate air bubbles.

Table 1. Set-up for XENO-Q Reaction

Component	Volume per reaction, μl	
RNA	X	
Nuclease-free distilled water	10-x	
Xeno-pol reaction premix	10	
Total volume	20	

2. Incubate the complete reaction mix according to the guidelines in Table 2 using a thermal cycler with the heated lid on.

Table 2. Reaction conditions of XENO-Q Reaction

Temperature (°C)	Incubation time (min)
95	
63	10

- 3. After the reaction, transfer the samples directly to the ice rack.
- 4. Prepare the nuclease reaction mix as indicated in Table 3. Briefly mix with a vortex, to thoroughly mix the contents. Centrifuge the reaction tubes briefly to spin down the contents and eliminate air bubbles.

Table 3. Set-up for Nuclease Reaction Mixture

Component	Volume per reaction, μl
Xeno-nuclease mixture	2
Xeno-nuc buffer	18
Total volume	20

- 5. Mix XENO-Greaction sample (20 μt) and nuclease reaction mixture (20 μt) thoroughty by vortexing. Centrifuge the reaction tubes briefly to spin down the contents and eliminate air bubbles.
- 6. Place the reaction tubes into a thermal cycler, then incubate at 60°C for 10 min.
- 7. After the reaction, transfer the samples directly to the ice rack.

Part C. Column Elution

- 8. Add 100 µl of column buffer to the reaction tubes, vortex briefly to thoroughly mix the contents, and then centrifuge the reaction tubes briefly to spin down the contents.
- 9. Place XENO-QTM clean-up column in a new 1.5 ml collection tube and pipet up to 200 μ l of the mixture into a column. Close the lid and centrifuge at 2500 x gfor 1 min at 25°C.
- 10. Discard the column and vortex briefly to thoroughly mix the contents, and then centrifuge the reaction tubes briefly to spin down the contents.
- 11. Proceed to performing the real-time PCR (real-time PCR section)

Protocol: XENO-Q miRNA Detection Kit

Part D. Real-Time PCR

1. In a 1.5-mL microcentrifuge tube, prepare sufficient amount of PCR Reaction Mix for the required number of reactions according to the Table 4 shown below.

Table 4. Real-time PCR Reaction mix

Component	mponent Volume per reaction, μl	
XENO QPCR premix	10	
Probe/primer mix	5	
Total volume	15	

Table 5. Probe/primer mix (human miRNA detection kit)

Probe/primer mix	Target miRNA	Fluorescence	
hsa-miR-1260b probe	hsa-miR-1260b	FAM	
hsa-miR-423-5p probe	hsa-miR-423-5p	FAM	
hsa-miR-378a-3p probe	hsa-miR-378a-3p	FAM	

Table 6. Probe/primer mix (mouse miRNA detection kit)

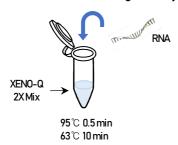
Probe/primer mix	Target miRNA	Fluorescence	
mmu-miR-423-5p probe	mmu-miR-423-5p	FAM	
mmu-miR-378a-3p probe	mmu-miR-378a-3p	FAM	

- 2. Vortex PCR Reaction Mix to thoroughly mix the contents, then centrifuge briefly to spin down the contents.
- 3. Add 5 μl of cDNA template to each reaction well of the plate.
- 4. Transfer 15 µl of PCR Reaction Mix to each well of PCR reaction plate. The total volume should be 20 µl per reaction well.
- 5. Seal the reaction plate with an adhesive cover, then vortex briefly to thoroughly mix the contents.
- 6. Centrifuge the reaction plate briefly to spin down the contents.
- 7. Load the reaction plate in the real-time PCR instrument.
- 8. Set an appropriate experiment setting and PCR thermal cycling conditions for your instrument.

Table 7. PCR conditions

Step	Temperature	Time	Cycles
Enzyme activation	95°C	5 minutes	1
Denaturation	95°C	10 seconds	40
Annealing/Extension	60°C	30 seconds	40

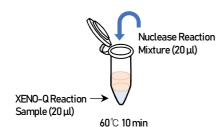
- 9. Set the reaction volume appropriate for the reaction plate.
- 10. Start the run.



Quick Guide

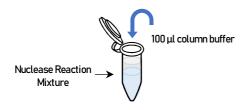
Protocol: XENO-Q

Part A. XENO-Q Reaction


1. Mix the RNA with XENO-Q 2X Mix and incubate at 95 $^{\circ}$ C for 0.5 min and 63 $^{\circ}$ C for 10 min using a PCR cycler.

2. After the reaction, transfer the samples directly to the ice rack.

Part B. Nuclease Treatment


3. Add 20 μ l of nuclease reaction mixture and mix thoroughly by vortexing. Incubate the prepared sample at 60 $^{\circ}$ C for 10 min using a PCR cycler.

4. After the reaction, transfer the samples directly to the ice rack.

Part C. Column Elution

5. Add 100 μ l of column buffer to the reaction tubes, vortex briefly to thoroughly mix the contents, and then centrifuge the reaction tubes briefly to spin down the contents.

6. Place XENO- Q^{TM} clean-up column in a new 1.5 ml collection tube and pipet up to 140 μ l of the mixture into a column. Close the lid and centrifuge at 2,500xgfor 1 min at RT.

7. Discard the column and vortex briefly to thoroughly mix the contents, and then centrifuge the reaction tubes briefly to spin down the contents.

Part D. Real-Time PCR

8. Proceed to performing the real-time PCR.

Kit Contents (Human Kit)

Number	Kit contents	Amount	Quantity
1	XENO-Q 2X Mix	10 µl	48
2	Nuclease Mix	100 µl	1
3	Nuclease Buffer	900 µl	1
4	Column Buffer	1600 µl	5
5	2x XENO qPCR premix	1000 µl	5
6	hsa-miR-1260b probe	375 µl	2
7	hsa-miR-423-5pprobe	375 µl	2
8	hsa-miR-378a-3pprobe	375 µl	2
9	Clean-up Column	-	48

Kit Contents (Mouse Kit)

Number	Kit contents	Amount	Quantity
1	XENO-Q2X Mix	10 µl	48
2	Nuclease Mix	100 µl	1
3	Nuclease Buffer	900 µl	1
4	Column Buffer	1600 µl	5
5	2x XENO qPCR premix	1000 µl	3
6	mmu-miR-423-5p probe	375 µl	2
7	mmu-miR-378a-3pprobe	375 µl	2
8	Clean-up Column	-	48